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Abstract

The mathematical concepts that the tutorial introduces and illustrates.

Todo list

1 Introduction and General Notation
We summarize the mathematical content of our tutorial on learning Bayesian networks
for multi-relational data. The definitions specify the log-linear models that we use for
relational data. The note is complementary to the tutorial: while the tutorial uses a
minimum of formal notation and a maximum of examples, the note has no examples,
but provides a complete and precise set of definitions. As i.i.d. data are a special
case of relational data, our aim is to generalize statistical concepts for i.i.d. data to
relational data. Table 1 provides a summary of the correspondences that this note
defines formally.

Table 1: Statistical concepts for relational vs. i.i.d. data. With a single population and
unary functors only, the relational concepts reduce to the i.i.d. concepts.

Representation Population Instances Sample Size Empirical Frequency
I.i.d Data Single Table Single Rows Single N Sample Frequency

Relational Data Multiple Tables Multiple Groundings Multiple N , one for each population Database Frequency

We use boldface to denote sets and lists of objects; for instance, {a1, a2, . . . , an} ≡
a. The notation |S| denotes the cardinality of a set S. Fix a set of random variables
X = {X1, . . . , Xn}. The notation P (Xi = x) ≡ P (x) denotes the probability of
random variableXi taking on value x. We also use the set notation P (X = x) ≡ P (x)
to denote the joint probability that each random variable Xi takes on value xi.
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2 Possible Worlds
A world is a triple 〈I,V,F〉 where

1. I is a set of individuals,

2. V is a set of values, including T,F,na and

3. F is a set of functions, called functors, that map one or more individuals to a
value.

For simplicity we consider worlds with a finite number of functors and values only,
but that is not essential for the results presented. Individuals are denoted by lower case
constants. A functor

f : Ik → V

with k arguments has arity k. A functor that returns a Boolean value {T,F} is called a
predicate, usually written with uppercase letters like P,R. Other functors are usually
writen with lowercase letters.

A sample from world 〈I,V,F〉 is a subworldD = 〈I ′ ⊂ I,V,F|I ′〉 that specifies
the values of functors for arguments drawn from a finite subset I ′ of individuals.

2.1 Possible Worlds
A possible world is a world where each functor belongs to exactly one of the following
groups.

Classes A set of unary predicates.

Relationships A set of predicates with arity > 1.

Class Attributes For each class, a set of functors associated with the class. A class
attribute is defined only for instances of the class. Thus if f is an attribute of
Class , then f(a) = na whenever Class(a) = F.

Relationship Attributes For each relationship, a set of functors associated with the
relationship. A relationship attribute is defined only for instances of the re-
lationship. Thus if f is an attribute of Relation , then f(a) = na whenever
Relation(a) = F.

In a possible world, each individual belongs to at least one class. The set of indi-
viduals that belong to a class is given by {a ∈ I : Class(a) = T}. The term class may
refer both to the functor and to the associated set of indviduals. Relational functors are
typed as well, meaning that each argument position is associated with a class. If any
argument is from the wrong class, the functor returns na .
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3 Relational Random Variables
A relational random variable is a logical term with a probabilistic semantics. Terms in
logic are analogues of random variables in probability theory because both are built out
of functions: Applying a function to a set of terms produces another term. Likewise,
applying a function to a set of random variables produces another random variable.

Formally, a term is (i) an individual constant, (ii) a population variable, or (iii) a
functional term of the form f(τ1, . . . , τk) where the type of each term τi matches
the argument type of f . A relational random variable (RRV) is a functional term.
[maybe use ”first-order variable” until we present a probabilistic interpretation]

When discussing general statistical concepts, the special syntactic structure of an
RRV is often not important. In such cases, we denote them using the traditional random
variable notation like X,Y .1 A term/random variable is ground if it contains only
constants; otherwise it is first-order (FORV). If we wish to emphasize that a RRV is
ground, we indicate this using notation like X∗, Y ∗.

3.1 Instantiations and Groundings
An instantiation A\a replaces a population variable by an individual instance from
the same class, denoted by a constant. An instantiation for a set of population variables
specifies an instance for each. Using boldface vector notation, A\a = {A1\a1, . . . ,Ak\ak}
denotes an instantiation for a set of population variables.

Applying an instantiation to a term/random variable replaces every occurrence of
a population variable in the term/random variable by the instance specified. We write
XA\a for applying the instantiation A\a to X . An instantiation may also be applied to
a set of random variables. An instantiation may replace all, some, or none of the popu-
lation variables in a list of random variables. If an instantiation replaces all population
variables, it is a grounding. Since a grounding produces a ground object, we indicate
this by adding a ∗ marker to the result of applying the grounding. For example, the
notation X∗A\a indicates that the grounding A\a specifies a value for each population
variable in the list of random variables X . Without an ∗ marker, an instantiation may
replace by constants any number of population variables, including none or all.

3.2 Logical Formulas and Joint Assignments
A probabilistic semantics assigns a probability to each logical formula. Logical for-
mulas are built out of basic equations of the form τ1 = τ2. These basic statements
can be combined using the standard Boolean operations (and, or, not), and extended
with quantifiers (for all, exists). The statistical analogue to adding quantifiers is ex-
tending the Boolean algebra over the basic events τ1 = τ2 to a σ-algebra. We describe
the random selection semantics for a restricted language that is sufficient to represent
the queries that are usually modelled with Bayesian networks: Conjunctions of basic

1Unfortunately the tradition in statistics clashes with the equally strong tradition in logic of using X,Y
to denote population variables.
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assignments. A basic assignment specifies a value for a random variable, and a con-
junction of them represents a joint assignment. Using random variable notation, a joint
assignment is written as (X1 = x1, . . . , Xn = xn) ≡X = x. The notation

Pw(X = x) = p

denotes that in worldw, the frequency of the joint assignment X = x is p. In Halpern’s
logical framework, this is equivalent to the statement

w |= P (X = x) = p

which can be read as “in world w, the probability assertion P (X = x) = p is true”.
We next describe Halpern’s probabilistic semantics for relational random variables.

4 The Random Selection Semantics for First-Order Re-
lational Random Variables

The key idea of the random selection semantics is to view a first-order variable A as a
random variable ranging over instances of the class associated with A. In the following
we assume for a population variable a uniform distribution over its class. The random
selection semantics treats different population variables as independent of each other,
so their joint distribution is the product of the individual distributions.

Given that population variables are random variables, first-order terms represent
functions of random variables. A function of random variables themselves represents
a random variable, as usual in propability theory: The probability that function f takes
on value y is the probability mass of all arguments x such that f(x) = y.

For a ground term, an assignment X∗ = x of a value is either true or false in a
possible world. We use an indicator function to represent this value, for each ground
term assignment, and for each world. These ideas lead to the following definitions.

Pw(A = a) ≡ 1

|IA|
(1)

Pw(A1 = a1, . . . ,Ak = ak) ≡ 1

|IA1
| × · · · × |IAk |

(2)

Tw(X
∗ = x) ≡

{
1 if w assigns value xi to each X∗i
0 otherwise

(3)

Pw(X = x) =
∑
a

Tw(X
∗
A\a = x)× Pw(A = a) (4)

Given the uniform distribution over tuples of individuals (Equation (2)), the joint
probability Pw(·) of first-order random variables can be interpreted as a proportion,
namely the number of groundings that match the joint assignment, divided by the total
number of possible groundings. The grounding count is given by
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n [X = x;w] ≡
∑
a

Tw(X
∗
A\a = x) (5)

where a ranges over the set of groundings of the first-order random variables in X .
Therefore

Pw(X = x) =
n [X = x;w]

|IA1 | × · · · × |IAk |
. (6)

That is, the relational frequency of a first-order formula is the number of groundings
that satisfy the formula, divided by the number of possible groundings given the type
constraints.

n [X = x|A = a;w] ≡ n
[
XA\a = x;w

]
. (7)

4.1 Data Table Visualization
We can visualize the frequency distribution Pw(·) in terms of a groundings table as
follows [3]. A possible world w assigns a value to each ground random variable X∗.
Let X∗A\a be a grounding for n relational random variables. Then x

A\a
w denotes an

n-dimensional vector whose entries list one value for each of the n ground random
variables X∗A\a, as determined by w. We can visualize the vectors xA\a

w in a table with
n columns whose rows are indexed by the possible groundings a. This groundings
table is the counterpart to a data table for a set of random variables X in the case of
i.i.d. data. Equation (6) entails that the frequency Pw(X = x) is the number of rows
in the groundings table that match the joint assignment X = x, divided by the total
number of rows in the groundings table.

4.2 Ground Relational Random Variables
The random selection semantics cannot be used to define a distribution over the values
of a ground term. Halpern’s type 2 semantics instead requires the specification of a
distribution µ over worlds. The probability P ∗(f(a) = x) is then the probability sum
of all worlds that satisfy f(a) = x.

While in principle, probabilities over first-order formulas need not be related to
probabilities over completely ground formulas, the Halpern instantiation principle
connects the two via the equation:

Pw(X = x) = P ∗(X∗ = x) (8)

for any grounding X∗ of the random variables X∗. Halpern’s original principle is re-
stricted to a set of terms that contain a single population variable only. We use the more
general version of the instantiation principle that extends it to formulas with multiple
population variables (for discussion see [1]).
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5 Bayesian Networks for Relational Data

5.1 Bayesian Networks
A Bayesian Network (BN) is a directed acyclic graph (DAG) whose nodes comprise
a set of random variables [2]. Depending on context, we interchangeably refer to the
nodes and (random) variables of a BN. The conditional probability parameters of a
Bayesian network specify the distribution of a child node given an assignment of values
to its parent node. For an assignment of values to its nodes, a BN defines the joint
probability as the product of the conditional probability of the child node value given
its parent values, for each child node in the network. This means that the log-joint
probability can be decomposed as the node-wise sum

lnPB(X = x) =

n∑
i=1

lnPB(Xi = xi|Pa(Xi) = xPa(Xi)) (9)

where xi resp. xPa(Xi) is the assignment of values to node Xi resp. the par-
ents of Xi determined by the assignment x. To avoid difficulties with ln(0), here and
below we assume that joint distributions are positive everywhere. The parameters of
the Bayesian network are the conditional probabilities of child node values given as-
signments to parent nodes. A common compact notation for parameter values is the
following abbreviation

θijk ≡ PB(Xi = xik|Pa(Xi) = paj)

where xik denotes the k-th possible value of nodeXi and paj denotes the j-th possible
state (value assignment) for the parents of Xi. Since the parameter values for a Bayes
net define a joint distribution over its nodes, they therefore entail a marginal, or uncon-
ditional, probability for a single node. We denote the marginal probability that node
Xi has value xik as

θik ≡ PB(Xi = xik).

5.2 First-Order Bayesian Networks
A First-Order Bayesian Network (FOB) is a Bayesian network whose nodes are first-
order terms. Via equation 9, a FOB defines a distribution over first-order random vari-
ables. If a FOB is learned from a sampleD drawn from world w, we can view the FOB
as an estimator of the relational class-level probability distribution Pw(·).

A FOB does not determine a unique probability distribution P ∗B(·) over all ground
random variables, because a set of ground random variables may instantiate the same
FOB multiple times. The Halpern instantiation principle (8) for a FOB B constrains
the ground and first-order distributions to agree on single groundings:

P ∗B(X
∗ = x) = PB(X = x) (10)

for any grounding X∗ of the nodes in the FOB.
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6 The Random Selection Pseudo-Likelihood
For i.i.d. data, the likelihood function quantifies how well a Bayesian network fits the
data. The random selection semantics suggests a pseudo-likelihood function that plays
the same role for relational data. The term “pseudo” indicates that the likelihood func-
tion is not normalized, meaning that the sum of the pseudo-likelihoods of all possible
worlds is not 1.

The expected log-likelihood of a randomly selected grounding is given by the sum

LB(D) ≡
1

|IA1
| × · · · × |IAk |

∑
a

lnPB(X = x
A\a
D ) (11)

where the summation ranges over complete groundings of B.
By the instantiation principle (10), the joint probability P ∗B(X

∗ = x
A\a
D ) can be

computed from class-level probabilities as shown in Equation (11). The sum ranges
over an exponentially large domain of possible groundings. However, the next propo-
sition provides a closed form that sums over the nodes in the FOB instead. The closed
form can be expressed using the following notation.

1. Let (Xi,Pa(Xi)) = xijk be the joint assignment that assigns to node Xi its k-th
possible value, and to its parents their j-possible state. This formula is associated
with a particular BN structure, which will be fixed by context.

2. Let pijk(D) ≡ PD((Xi,Pa(Xi)) = xijk) be the class-level frequency of the
family assignment (Xi,Pa(Xi)) = xijk in sample D.

Proposition 6.1 Assume the Bayes net instantiation principle 10. Then

LB(D) =
∑
ijk

ln θijk · pijk(D)

where the summation on the right ranges over all nodes, node values, and parent states.

We refer to LB(·) as the random selection pseudo log-likelihood function, and
to its exponent expLB(·) as the random selection pseudo likelihood function.

The closed form of the random selection pseud log-likelihood is almost identical to
the log-likelihood function for i.i.d. data, except that the latter replaces frequencies by
counts. This implies that as with i.i.d. data, the random selection pseudo log-likelihood
is maximized by using the observed empirical frequencies as parameter estimates.

Proposition 6.2 The parameter values that maximize the random selection pseudo log-
likelhood are the empirical conditional frequencies observed in a database:

θ̂ijk(D) =
pijk(D)∑
k′ pijk′(D)

.
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7 From Class-Level Probabilities to Instance-Level Prob-
abilities

This section considers applying class-level frequencies to inference about ground ran-
dom variables where the same class-level random variables may be instantiated several
times. We examine the classification version of this problem: Given a single ground
term, called the query random variable, and values assigned to all other ground terms,
what is the probability distribution over values of the query RV?

For a ground random variable X∗, and a database defined by a complete set of
literals w∗, we write w∗−X∗ for the set of ground literals that specify the values of all
ground literals except for X∗. The problem is then to define a conditional distribution

P ∗(Y ∗ = y|w∗−Y ∗).

Any conditional probability is always proportional to the joint probability:

P ∗(Y = y|X = x) = P ∗(y,x)/Z(x)

where the normalization constant depends on x but not y. A natural approach is there-
fore to define the query probability as proportional to the pseudo log-likelihood:

P ∗(Y ∗ = y|w∗−Y ∗) ∝ expLB(Y
∗ = y, w∗−Y ∗) = exp

∑
ijk

ln θijk·pijk(Y ∗ = y, w∗−Y ∗).

(12)
The problem with this approach is that often many of the θijk terms involve (Xi,Pa(Xi)) =

xijk conditions that are irrelevant for the target variable. For example, if we want to
predict the box office receipts of a movie based on ratings and the age of the rater, the
ages of users who did not rate the movie may well be irrelevant. Equation 12 can be
restricted to features that are relevant to the target variable as follows.

Definition 7.1 A family configuration is relevant if the prior probability of the child
node value differs from its conditional probability given the parent node values. In
symbols, the configuration xijk is relevant if θijk 6= θik.

Now we can define the log-linear equation.

P ∗(Y ∗A\a = y|w∗−Y ∗A\a) ∝ exp
∑
ijk

ln θijk·Pw((Xi,Pa(Xi)) = xijk|θijk 6= θik,A = a)

(13)
The relevant conditional family frequency may be computed as follows.

Pw((Xi,Pa(Xi)) = xijk|Ri ,A = a) =

0 if θijk = θik
n[(Xi,Pa(Xi))=xijk|A=a;w]∑

x
ij′k′ :θijk 6=θik

n[(Xi,Pa(Xi))=xij′k′ |A=a;w]
if θijk 6= θik

(14)
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8 Parameter and Structure Learning Algorithms
Definition 8.1 The Inverse Fast Möbius Transform

Input A set of first-order random variables; a database.

Output A contingency table that lists, for each join assignment of values to the first-
order random variables, the number of groundings that match the assignment in
the database.

We first compute the Möbius parameters of the joint distribution. These involve pos-
itive relationships only. The IFMT transforms these into joint probabilities without
further data access.

Definition 8.2 The Learn-and-Join Structure Learning Algorithm

Input A set of first-order random variables; a database.

Output A first-order Bayesian network whose nodes are the given set of first-order
random variables.

The algorithm performs a hierarchical search in the lattice of relationship chains. It
learns a Bayesian multi-net, one Bayesian network for each point in the lattice. Edges
learned on smaller relationship chains are propagated to larger relationship chains.
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